您现在的位置是:网站首页> 编程资料编程资料

MySQL查询缓存的小知识_Mysql_

2023-05-27 350人已围观

简介 MySQL查询缓存的小知识_Mysql_

前言

我们知道,缓存的设计思想在RDBMS数据库中无处不在,就拿号称2500w行代码,bug堆积如山的Oracle数据库来说,SQL的执行计划可以缓存在library cache中避免再次执行相同SQL发生硬解析(语法分析->语义分析->生成执行计划),SQL执行结果缓存在RESULT CACHE内存组件中,有效的将物理IO转化成逻辑IO,提高SQL执行效率。

MySQL的QueryCache跟Oracle类似,缓存的是SQL语句文本以及对应的结果集,看起来是一个很棒的Idea,那为什么从MySQL 4.0推出之后,5.6中默认禁用,5.7中被deprecated(废弃)以及8.0版本被Removed,今天就聊聊MySQL QueryCache的前世今生。

QueryCache介绍

MySQL查询缓(QC:QueryCache)在MySQL 4.0.1中引入,查询缓存存储SELECT语句的文本以及发送给客户机的结果集,如果再次执行相同的SQL,Server端将从查询缓存中检索结果返回给客户端,而不是再次解析执行SQL,查询缓存在session之间共享,因此,一个客户端生成的缓存结果集,可以响应另一个客户端执行同样的SQL。

回到开头的问题,如何判断SQL是否共享?

通过SQL文本是否完全一致来判断,包括大小写,空格等所有字符完全一模一样才可以共享,共享好处是可以避免硬解析,直接从QC获取结果返回给客户端,下面的两个SQL是不共享滴,因为一个是from,另一个是From。

 --SQL 1 select id, balance from account where id = 121; --SQL 2 select id, balance From account where id = 121; 

下面是Oracle数据库通过SQL_TEXT生成sql_id的算法,如果sql_id不一样说明就不是同一个SQL,就不共享,就会发生硬解析。

 #!/usr/bin/perl -w use Digest::MD5 qw(md5 md5_hex md5_base64); use Math::BigInt; my $stmt = "select id, balance from account where id = 121\0"; my $hash = md5 $stmt; my($a,$b,$msb,$lsb) = unpack("V*",$hash); my $sqln = $msb*(2**32)+$lsb; my $stop = log($sqln) / log(32) + 1; my $sqlid = ''; my $charbase32 = '0123456789abcdfghjkmnpqrstuvwxyz'; my @chars = split '', $charbase32; for($i=0; $i < $stop-1; $i++){ my $x = Math::BigInt->new($sqln); my $seq = $x->bdiv(32**$i)->bmod(32); $sqlid = $chars[$seq].$sqlid; } print "SQL is:\n $stmt \nSQL_ID is\n $sqlid\n"; 

大家可以发现SQL 1和SQL 2通过代码生成的sql_id值是不一样,所以不共享。

 SQL is: select id, balance from account where id = 121 SQL_ID is dm5c6ck1g7bds SQL is: select id, balance From account where id = 121 SQL_ID is 6xb8gvs5cmc9b 

如果让你比较两个Java代码文件的内容的有何差异,只需要将这段代码理解透了,就可以改造实现自己的业务逻辑。

QueryCache配置

 mysql> show variables like '%query_cache%'; +------------------------------+----------+ | Variable_name | Value | +------------------------------+----------+ | have_query_cache | YES | | query_cache_limit | 1048576 | | query_cache_min_res_unit | 4096 | | query_cache_size | 16777216 | | query_cache_type | OFF | | query_cache_wlock_invalidate | OFF | 
Variable_nameDescription
have_query_cache查询缓存是否可用,YES-可用;NO-不可用,如果用标准二进制MySQL,值总是YES。
query_cache_limit控制单个查询结果集的最大尺寸,默认是1MB。
query_cache_min_res_unit查询缓存分片数据块的大小,默认是4KB,可以满足大部分业务场景。
query_cache_size查询缓存大小,单位Bytes,设置为0是禁用QueryCache,注意:不要将缓存的大小设置得太大,由于在更新过程中需要线程锁定QueryCache,因此对于非常大的缓存,您可能会看到锁争用问题。
query_cache_type当query_cache_size>0;该变量影响qc如何工作,有三个取值0,1,2,0:禁止缓存或检索缓存结果;1:启用缓存,SELECT SQL_NO_CACHE的语句除外;2:只缓存以SELECT SQL_CACHE开头的语句。

query_cache_min_res_unit说明

默认大小是4KB,如果有很多查询结果很小,那么默认数据块大小可能会导致内存碎片,由于内存不足,碎片可能会强制查询缓存从缓存中删除查询。

在这种情况下,可以减小query_cache_min_res_unit的值,由于修剪而删除的空闲块和查询的数量由Qcache_free_blocks和Qcache_lowmem_prunes状态变量的值给出,如果大量的查询有较大的结果集,可以增大该参数的值来提高性能。

通常开启QueryCache方式

 # 修改MySQL配置文件/etc/my.cnf,添加如下配置,重启MySQL server即可。 [mysqld] query_cache_size = 32M query_cache_type = 1 

QueryCache使用

先搞点测试数据,分别对禁用和开启QueryCache下的场景进行测试。

 --创建一个用户表users,并且插入100w数据。 CREATE TABLE `users` ( `id` bigint NOT NULL AUTO_INCREMENT, `name` varchar(20) NOT NULL DEFAULT '' COMMENT '姓名', `age` tinyint NOT NULL DEFAULT '0' COMMENT 'age', `gender` char(1) NOT NULL DEFAULT 'M' COMMENT '性别', `phone` varchar(16) NOT NULL DEFAULT '' COMMENT '手机号', `create_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间', `update_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '修改时间', PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='用户信息表'; select count(*) from users; +----------+ | count(*) | +----------+ | 1000000 | 

禁用queryCache场景

在不使用QueryCache的时候,每次执行相同的查询语句,都要发生一次硬解析,消耗大量的资源。

 #禁用QueryCache的配置 query_cache_size = 0 query_cache_type = 0 

重复执行下面查询,观察执行时间。

 --第一次执行查询语句 mysql> select * from users order by create_time desc limit 10; +---------+------------+-----+--------+-------------+---------------------+---------------------+ | id | name | age | gender | phone | create_time | update_time | +---------+------------+-----+--------+-------------+---------------------+---------------------+ | 997855 | User997854 | 54 | M | 15240540354 | 2020-12-15 14:34:50 | 2020-12-15 14:34:50 | ....... 10 rows in set (0.89 sec) --第二次执行同样的查询语句 mysql> select * from users order by create_time desc limit 10; +---------+------------+-----+--------+-------------+---------------------+---------------------+ | id | name | age | gender | phone | create_time | update_time | +---------+------------+-----+--------+-------------+---------------------+---------------------+ | 997855 | User997854 | 54 | M | 15240540354 | 2020-12-15 14:34:50 | 2020-12-15 14:34:50 | ....... 10 rows in set (0.90 sec) -- profile跟踪情况 mysql> show profile cpu,block io for query 1; +----------------------+----------+----------+------------+--------------+---------------+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +----------------------+----------+----------+------------+--------------+---------------+ | preparing | 0.000022 | 0.000017 | 0.000004 | 0 | 0 | | Sorting result | 0.000014 | 0.000009 | 0.000005 | 0 | 0 | | executing | 0.000011 | 0.000007 | 0.000004 | 0 | 0 | | Sending data | 0.000021 | 0.000016 | 0.000004 | 0 | 0 | | Creating sort index | 0.906290 | 0.826584 | 0.000000 | 0 | 0 | 

可以看到,多次执行同样的SQL查询语句,执行时间都是0.89s左右,几乎没有差别,同时时间主要消耗在Creating sort index阶段。

开启queryCache场景

开启查询缓存时,查询语句第一次被执行时会将SQL文本及查询结果缓存在QC中,下一次执行同样的SQL执行从QC中获取数据返回给客户端即可。

 #禁用QueryCache的配置 query_cache_size = 32M query_cache_type = 1 
 --第一次执行查询语句 mysql> select * from users order by create_time desc limit 10; +---------+------------+-----+--------+-------------+---------------------+---------------------+ | id | name | age | gender | phone | create_time | update_time | +---------+------------+-----+--------+-------------+---------------------+---------------------+ | 997855 | User997854 | 54 | M | 15240540354 | 2020-12-15 14:34:50 | 2020-12-15 14:34:50 | ....... 10 rows in set (0.89 sec) --第二次执行查询语句 mysql> select * from users order by create_time desc limit 10; +---------+------------+-----+--------+-------------+---------------------+---------------------+ | id | name | age | gender | phone | create_time | update_time | +---------+------------+-----+--------+-------------+---------------------+---------------------+ | 997855 | User997854 | 54 | M | 15240540354 | 2020-12-15 14:34:50 | 2020-12-15 14:34:50 | ....... 10 rows in set (0.00 sec) -- profile跟踪数据 mysql> show profile cpu,block io for query 3; +--------------------------------+----------+----------+------------+--------------+---------------+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +--------------------------------+----------+----------+------------+--------------+---------------+ | Waiting for query cache lock | 0.000016 | 0.000015 | 0.000001 | 0 | 0 | | checking query cache for query | 0.000007 | 0.000007 | 0.000000 | 0 | 0 | | checking privileges on cached | 0.000004 | 0.000003 | 0.000000 | 0 | 0 | | checking permissions | 0.000034 | 0.000033 | 0.000001 | 0 | 0 | | sending cached result to clien | 0.000018 | 0.000017 | 0.000001 | 0 | 0 | 

可以看到,第一次执行QueryCache里没有缓存SQL文本及数据,执行时间0.89s,由于开启了QC,SQL文本及执行结果被缓存在QC中,第二次执行执行同样的SQL查询语句,直接命中QC且返回数据,不需要发生硬解析,所以执行时间降低为0s,从profile里看到sending cached result to client直接发送QC中的数据返回给客户端。

查询缓存命中率

查询缓存相关的status变量

 mysql>SHOW GLOBAL STATUS LIKE 'QCache\_%'; +-------------------------+----------+ | Variable_name | Value | +-------------------------+----------+ | 
                
                

-六神源码网